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Thermal convection in a rapidly rotating spherical shell is investigated experimentally
and numerically. The experiments are performed in water (Prandtl number P = 7) and
in gallium (P = 0.025), at Rayleigh numbers R up to 80 times the critical value in water
(up to 6 times critical in gallium) and at Ekman numbers E ∼ 10−6. The measurements
of fluid velocities by ultrasonic Doppler velocimetry are quantitatively compared
with quasi-geostrophic numerical simulations incorporating a varying β-effect and
boundary friction (Ekman pumping). In water, unsteady multiple zonal jets, weaker
in amplitude than the non-axisymmetric flow, are experimentally observed and
numerically reproduced at moderate forcings (R/Rc < 40). In this regime, zonal flows
and vortices share the same length scale. Gallium experiments and strongly super-
critical convection experiments in water correspond to another regime. In these
turbulent flows, the zonal motion amplitude U dominates the non-axisymmetric
motion amplitude Ũ . As a result of the reverse cascade of kinetic energy, the

characteristic Rhines length scale �β ∼
√

U/β of zonal jets emerges, and the boundary
friction becomes the main brake on the growth of the zonal flow. A scaling law

U ∼ Ũ 4/3 is then derived and verified both numerically and experimentally.

1. Introduction: the geophysical context
Paleomagnetic observations show that the Earth has possessed a global magnetic

field for much of its history. Spacecraft missions have shown that other telluric or
giant planets also possess a magnetic field (see Jones 2003 for a review). Observations
of the Earth’s magnetic field by satellites have improved considerably in the past few
decades, allowing detailed analysis of its current geometry and of its recent changes
(e.g. Hulot et al. 2002; Jackson 2003). Thermal and compositional convection inside
the outer core is likely to drive the complex fluid dynamics that is the source of this
magnetic field.

Numerical models of rotating spherical dynamos developed in the last decade have
been shown to reproduce some of the observations, such as reversals or the dipolar
geometry of the self-sustained magnetic field (see the reviews of Dormy, Valet &
Courtillot 2000 and Kono & Roberts 2002). However, the extent to which these
calculations model the mechanisms of generation of the Earth’s magnetic field is
still debated as they use unrealistic physical parameters for the rotating fluid. In
particular the magnetic Prandtl number Pm = ν/λ, the Ekman number E = ν/Ωd2,
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Definition Expression Water experiments Gallium experiments Earth’s core

P , Prandtl ν/κ 7 0.022 − 0.025 ∼ 10−1

E, Ekman ν/Ωd2 2.4 × 10−6 − 9.7 × 10−6 9.7 × 10−7 − 2.9 × 10−6 ∼ 10−15

Eκ , thermal Ekman κ/Ωd2 3.4 × 10−7 − 1.4 × 10−6 3.9 × 10−5 − 1.2 × 10−4 ∼ 10−14

E∗, modified Ekman (κ + ν)/Ωd2 2.4 × 10−6 − 9.7 × 10−6 3.9 × 10−5 − 1.2 × 10−4 ∼ 10−14

R, Rayleigh α�T Ω2d4/κν 1.2 × 108 − 3.3 × 109 8.6 × 106 − 8.4 × 107 −
Pm, magnetic Prandtl ν/λ − 1.4 × 10−6 ∼ 10−6

Table 1. Values of the dimensionless parameters in the water and gallium experiments, and in
the Earth’s core. Numbers are calculated from the physical properties listed in table 2 (using
d = 2.3 × 106 m and Ω = 7.27 × 10−5 rad s−1 for the Earth’s core). The Rayleigh number of the
Earth’s core is not computed since only the superadiabatic part of �T is relevant.

Definition [Units] Symbol Water Gallium Earth’s core

Density [kg m−3] ρ 103 6.1 × 103 ∼ 104

Kinematic viscosity [m2 s−1] ν 10−6 2.9 − 3.2 × 10−7 ∼ 10−6

Thermal expansion coefficient [K−1] α 2 × 10−4 1.3 × 10−4 ∼ 10−5

Thermal diffusivity [m2 s−1] κ 1.4 × 10−7 1.3 × 10−5 ∼ 10−5

Magnetic diffusivity [m2 s−1] λ − 0.21 ∼ 1

Table 2. Physical properties of liquid water, liquid gallium (Brito 1998) and their estimation
for the Earth’s core (De Wijs et al. 1998; Secco & Schloessin 1989).

and to a certain extent the thermal Prandtl number P = ν/κ of these simulations
are not appropriate to planetary cores (ν, κ and λ are respectively the viscous,
thermal and magnetic diffusivities, see tables 1 and 2; d is the width of the gap in
which the fluid is enclosed and Ω is the rotation rate). The mismatch between the
dimensionless numbers used in numerical models and those pertaining to planetary
interiors motivates experimental studies of magnetohydrodynamics in liquid metals:
in these experiments, physical properties of the liquid metal are de facto close to
those of metallic planetary cores. The main challenge of these experiments using
liquid metals is therefore to have motions rapid enough so that induction processes
can counteract diffusion. This is not an easy task, as the only very recent successes
in dynamo experiments (after some 50 years of unsuccessful attempts) demonstrate
(Gailitis et al. 2000; Stieglitz & Müller 2001).

Full numerical models of magnetic field generation in planetary cores have
inspired renewed attempts to derive scaling laws for the velocity and magnetic fields
(Christensen & Tilgner 2004). Assuming that the flux of light elements is not carried
by the thin plumes emitted from the inner core boundary, Starchenko & Jones (2002)
estimated the typical velocity within the Earth’s core and derived typical magnetic
fields as a result. Both Starchenko & Jones (2002) and Christensen & Tilgner (2004)
suggested that non-zonal velocities within core interiors scale with the energy fluxes
only and do not depend directly on the magnetic field permeating these bodies. They
noticed that electromagnetic stresses, on the other hand, damp the zonal flows that
are commonly found in simulations of non-magnetic rotating convection.

Our work follows on from the studies of the dynamical balance (Ingersoll & Pollard
1982; Cardin & Olson 1994; Aubert et al. 2001) pertaining to fully developed rotating
convection that have been used to build scaling laws for the planetary cores dynamics.
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We present an experimental study of convection in a rapidly rotating shell – using
the same set-up as Aubert et al. (2001) – supported by numerical simulations using
the quasi-geostrophic approximation. In addition, we investigate in a companion
paper (Gillet et al. 2007) the impact of an imposed magnetic field on the fluid
flow.

Theoretical studies describe the onset of convection in a rapidly rotating thick
spherical shell as a barotropic thermal Rossby wave, composed of vortices whose axes
are parallel to the rotation vector Ω (Roberts 1968; Busse 1970; Jones, Soward &
Mussa 2000; note that those three papers refer to uniformly heated spheres). The
critical parameters – Rayleigh number, wavenumber and frequency – are governed by
a modified Ekman number E∗ =(ν + κ)/Ωd2 (in the theoretical studies cited above,
there is no inner core, so that d would instead be the core radius). In the liquids
commonly used for convective experiments (water or silicon oils, where P � 1) this
number can be approximated by the Ekman number. On the other hand, in liquid
metals where P � 1 the thermal Ekman number Eκ = E/P becomes the relevant
control parameter. The description of the convective motions as barotropic thermal
Rossby waves has been validated in water experiments, both at low forcings (Busse &
Carrigan 1976; Carrigan & Busse 1983 for the onset of convection with E � 1.7 × 10−5,
Chamberlain & Carrigan 1986; Cordero & Busse 1992) and strong forcings (Cardin &
Olson 1992 where E � 4 × 10−6 and R up to 50 times critical), R = γα�T d4/κν being
the Rayleigh number with γ the gravity gradient, α the thermal expansion coefficient
of the fluid and �T the temperature difference between the inner and the outer
boundaries. Cardin & Olson (1994) – see also Sumita & Olson (2000, 2003) who
used a hemispherical shell – concentrated on the evolution of the heat flux as
convection develops from onset by comparing experiments performed in water with
quasi-geostrophic numerical simulations. Zonal flows driven by rotating convection
through Reynolds stresses have been experimentally studied by Manneville & Olson
(1996) using visualization techniques.

Ultrasonic Doppler velocimetry, ideal to quantitatively measure flow velocities in
liquid metals (Brito et al. 2001), was used by Aubert et al. (2001) to study nonlinear
rotating convection in a sphere filled with water or gallium. They stressed the role of
the inertial term in the equation of motion and proposed an inertial balance between
the Coriolis, inertial and buoyancy forces in order to explain the length and velocity
scales measured in the experiment. Recently, Shew & Lathrop (2005) have used a
larger (and more rapidly rotating) sphere filled with liquid sodium (P ∼ 0.01) and
investigated the heat flux distribution and temperature perturbations at very low
Ekman numbers. They use the critical length scale that arises at the onset of convection
to interpret their temperature perturbation spectra, in which they also see the signature
of a reverse cascade toward larger length scales (see below). From correlations
between temperature records measured at nearby locations, they deduce the intensity
of the zonal wind, that can be interpreted either as a geostrophic flow or as a thermal
wind.

Starting from Gilman (1977, 1978a, b), full numerical simulations of convection in
rapidly rotating spheres have been carried out to investigate some of the nonlinear
processes present in such a system. For instance, the zonal wind generation was
documented by Aurnou & Olson (2001) and Christensen (2001). However, these
studies are for large P and at Ekman numbers E � 3×10−5, which can be deemed quite
large once we take into account, for example, that there are tangential shear layers
of width E1/4d in rapidly rotating spherical shells (Stewartson 1966). Moreover, most
of these studies model free-slip boundaries that are appropriate to the atmospheric
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envelopes of giant planets but not to planetary cores. Other studies have focused
on the impact of the Prandtl number (Tilgner & Busse 1997) or the strength of
the forcing (Christensen 2002), but still with relatively large Ekman numbers. The
constraint of rotation enables the system to be reduced to two spatial coordinates.
Thus detailed investigations of small-amplitude convection (Busse & Or 1986; Or &
Busse 1987) used rotating annulus models with slightly inclined ends (of slope η).
In these models and at low Prandtl numbers – which favours intense zonal winds –
a series of bifurcations, including a transition to vacillating convection, occurs as R

is increased slightly above Rc (Schnaubelt & Busse 1992; Herrmann & Busse 1997;
Plaut & Busse 2002). Including a variation of η with the distance to the axis adds to
the geophysical realism of the models (Chen & Zhang 2002; Plaut & Busse 2005). In
the small-gap approximation, Plaut & Busse (2005) investigated the mean zonal flow
driven by the Reynolds stresses and found, for P = 7, a retrograde zonal flow near
the inner boundary and a prograde zonal flow farther from it. Chen & Zhang (2002)
found, for P = 1, that the scale of convection is enlarged through the sequence of
bifurcations that occurs before the chaotic regime. We have not been able to study
weakly nonlinear convection in our experiment, which is more appropriate to fully
developed convection. Morin & Dormy (2004) used a quasi-geostrophic model very
similar to our numerical model (where the slope η now corresponds to a spherical
boundary) to investigate the weakly nonlinear regime. They noticed that the interval
of Rayleigh number in which the successive bifurcations take place shrinks as the
Ekman number is decreased.

There are common features between deep rotating convection and thin-layer
baroclinic convection, which has been much studied in the context of the oceanic
and atmospheric dynamics. Experimental studies (e.g. Hide & Mason 1970; Read
1986; Hide, Lewis & Read 1994; Read, Lewis & Hide 1997), later coupled with
numerical computations, lead to considerations of wave/vortex interaction to generate
barotropic zonal winds from baroclinic eddies. Such zonally organized structures,
observed both in the envelopes of giant planets and in the Earth’s oceans and
atmosphere, are believed to be a consequence of two-dimensional turbulence (Williams
1978; Ingersoll et al. 1981; Galperin et al. 2004). In the absence of a source and sink,
the potential vorticity (sum of the relative and planetary vorticities integrated over
a fluid column) tends to be mixed by the turbulent processes, and is therefore
associated with zonal winds (Rhines & Young 1982; Hide & James 1983; Aubert,
Jung & Swinney 2002). The two-dimensional nature of the flow leads to an inverse
cascade of kinetic energy. The build-up of anisotropy, favouring flows in the azimuthal
direction, has been retrieved in numerical models using the β-plane approximation.
In this framework, Rhines (1975) suggested that the inverse cascade halts at the scale
�β =

√
U/β , at which kinetic energy is transferred to zonal jets by Rossby wave/vortex

interaction (here U is a measure of the typical velocity, and β is originally the
northward gradient of the Coriolis frequency f = 2Ω sin(latitude)). Such a scenario
has recently been validated by the experiments of Read et al. (2004). Whether or
not the Rhines scale �β appears in such a rotating fluid flow seems to depend on
how it compares with the external friction scale (Danilov & Gurarie 2002, 2004),
which results from the energy balance if the interior viscous dissipation is negligible.
If the external friction scale is small enough, it stops the inverse cascade and the
Rhines scale cannot arise. That external friction scale had been pointed out by Manin
(1990) who studied the vortex sizes as a function of the forcing in two-dimensional
turbulence without the β-effect. In a coupled experimental and numerical study of
differential rotation on a β-plane, Van de Konijnenberg et al. (1998) found that the
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number of vortices was decreasing as the flow becomes more turbulent, in agreement
with the scaling argument proposed by Manin (1990).

In deep convection, a quasi-geostrophic vorticity equation can also be written,
where a term βdc(s) = Ω d(lnH )/ds, dependent on the variation of depth with the
cylindrical radius s, replaces the β term (H (s) is the half-height of a fluid column
parallel to the axis of rotation; the subscript ‘dc’ stands for deep convection). Only
the components of the velocity field orthogonal to the rotation axis are described. The
quasi-geostrophic approximation requires U � Ω�, where � is the typical equatorial
length scale of the eddies. It has been used by Aubert et al. (2003) in a numerical
simulation of the experimental results reported by Aubert et al. (2001). They noticed
that the length scale �β based on βdc is not constant throughout the container, but
decreases with s since the slope of the container boundaries is larger closer to the
equator. Thus, they reckoned that, in the parameter range of the experiments, there is
a transition from an inner region dominated by turbulence to an outer region where
Rossby waves are dominant. The radial extent of the inner region is governed by
the Rhines scale �β and increases with the convective forcing. Near the equator, the
slope becomes so large that Rhines’ description does not apply and Rossby waves
prevail. We follow the approach of Aubert, Gillet & Cardin (2003) and use the
quasi-geostrophic approximation to model the experiment.

Our article follows the work of Gillet & Jones (2006), which relies on the same
numerical simulations. They first give a theoretical analysis of the weakly nonlinear
regime for quasi-geostrophic convection when the mean axisymmetric flow amplitude
remains weak – i.e. for moderate to large Prandtl numbers. They then derive scaling
laws for the velocities and temperature perturbations, that they verify up to relatively
large values of the forcing (up to 50 times supercritical in Rayleigh number) at P = 7.
In contrast to the inertial scaling (Aubert et al. 2001) they argue that the critical
length scale �c detected at the onset of convection remains important even for very
supercritical simulations. From the comparison between our experiments and our
quasi-geostrophic simulations, we propose in the present paper that

(i) the approach of Gillet & Jones (2006), based on �c, holds for convection at

moderate Reynolds numbers Re = Ud/ν, in a regime where the energy Ẽ of non-
axisymmetric flow dominates the energy E of the zonal flow. That regime includes
convection experiments in water at R/Rc � 40 (see § 5.2);

(ii) at large Reynolds number the Rhines scenario holds, in a regime where E � Ẽ,
but the scaling laws derived by Aubert et al. (2001) must be revisited: we derive the
Rhines length scale from the zonal flow amplitude instead of the non-axisymmetric
typical velocity. That regime includes convection experiments in gallium, as well as in
water for R/Rc > 40 (see § 4.3 and § 5.3).

The organization of the paper is as follows. We present in § 2 the experimental
apparatus and measurement techniques used in this study. We then derive in § 3 the
two-dimensional quasi-geostrophic model that describes thermal convection in a rap-
idly rotating shell with the boundary conditions that are relevant for our experimental
set-up. The onset of convection is investigated. In § 4, nonlinear convection experi-
ments in gallium are compared to quasi-geostrophic computations. We derive scaling
laws between zonal and non-zonal motions. In § 5, nonlinear convection experiments
in water are compared to quasi-geostrophic computations. Finally, in § 6, results and
application to planetary cores are discussed. For convenience, both cylindrical polar

(ŝ, φ̂, ẑ) and spherical coordinates (r̂, θ̂ , φ̂) are used throughout the description below.
To help the reader we summarize in table 3 several variables that appear in this
article.
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Variables Section Definitions

Ũrad(s) 2.2 radial profile of the r.m.s. radial velocity
U zon(s) 2.2 radial profile of the mean zonal velocity

ũs(s, φ, t) 3.2 non-axisymmetric radial velocity
ũφ(s, φ, t) 3.2 non-axisymmetric azimuthal velocity
uφ(s, t) 3.2 axisymmetric azimuthal velocity

ζ̃ (s, φ, t) 3.2 non-axisymmetric vertical vorticity
ζ (s, t) 3.2 axisymmetric vertical vorticity

Ũ 4.2 volumetric mean of Ũrad(s)
U 4.2 volumetric mean of U zon(s)

Ũ ∗ 4.2 maximum of Ũrad(s)

U
∗

4.2 maximum of −U zon(s)

Ẽ(t) 4.2 volumetric mean of the non-axisymmetric kinetic energy

E(t) 4.2 volumetric mean of the axisymmetric kinetic energy

Re� 5.2 local Reynolds number based on the r.m.s. flow = Ũ .�c

Re� 5.2 local Reynolds number based on the mean zonal flow = U.�c

P e� 5.2 local Péclet number = PRe�

Table 3. Definition of the variables – linked with velocities – used in this article, together
with the section where they first appear.

2. The experimental set-up
2.1. Description of the experimental apparatus

The experimental set-up, used by Aubert et al. (2001) in a previous study of the
rapidly rotating thermal convection, is composed of a sphere of spherical radius
ro = 110 mm through which passes a cylinder of cylindrical radius si = 40 mm, both
co-rotating around a vertical symmetry axis as seen in figure 1. The volume between
the sphere and the cylinder is filled with either gallium or water; their physical
properties are listed in table 2. The set-up rotates with a constant angular velocity
Ω ẑ, from 200 to 800 revolutions per minute (r.p.m.). The outer sphere is maintained
at a constant temperature To during the experiments. For water experiments within a
Plexiglas sphere, the control of the temperature within the shed where the experiment
is installed suffices to impose isothermal boundary conditions on the outer sphere.
For gallium experiments within a copper sphere, a heating resistance wound around
the sphere (see figure 1a) is added. In this type of convective experiment with
rotating containers, the centrifugal force is used as a cylindrical gravity as pioneered
by Busse & Carrigan (1976); therefore, in order to drive thermal convection, the
inner temperature Ti must be smaller than the outer one To. We regulate the inner
temperature by driving a thermostated water circulation within the cylinder. From
55 mm on both sides of the equatorial plane, the inner cylinder, made of copper is
covered with a thermal insulator, polyethylene HD 1000 (see figure 1b), so that the
cylindrical radial heat flux is kept very small there. Conversely, in the centre of the
sphere along the inner cylinder, temperatures are constant due to the circulation of
the water in contact with the copper cylinder. The temperature difference (To −Ti) has
been varied between 8 K and 33 K. Further technical details about the experimental
set-up can be found in Aubert et al. (2001).
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Figure 1. (a) The copper sphere used in gallium experiments. The probe used for ultrasonic
Doppler velocimetry is circled at the equator. The heating resistance is wound around the
sphere. (b) Meridional cross-section of the co-rotating sphere and inner cylinder.

2.2. Measurement techniques

Most previous centrifugal gravity experiments have been analysed using only visualiz-
ation techniques (Cardin & Olson 1994; Manneville & Olson 1996) or temperature
measurements (Sumita & Olson 2000, 2003; Shew & Lathrop 2005). We use the
ultrasonic Doppler velocimetry technique here in order to measure velocities in
gallium and in water (Brito et al. 2001; Aubert et al. 2001). An ultrasonic probe
rotating with the sphere in the equatorial plane (see figures 1a and 2) emits an
intermittent 4 MHz signal and receives a signal that has been sent back by particles
(pollen in water experiments or gallium oxides in gallium). The signal is then analysed
in the apparatus DOP2000 (model 2125, Signal Processing, Switzerland), which gives
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Figure 2. Equatorial cross-section indicating the locations of the probes and the paths
followed by ultrasound beams.

the velocity profiles of the fluid along the ultrasonic beam in the equatorial plane
every 160 ms in time, with a resolution down to 0.31 mm in depth. Two directions of
the ultrasonic beam are used in the equatorial plane of the rotating sphere (figure 2):

(a) toward the axis, which gives the radial velocity field us(s, t);
(b) at an angle χ with respect to the radial direction, which gives a transverse

velocity field uχ (s, t). The angle χ is 24.3◦ ± 1.5◦ (resp. 21.5◦ ± 1.5◦) in water experi-
ments (resp. gallium). Thus the ultrasonic beam approaches as close as 5 ± 3 mm (resp.
1 ± 3 mm) to the inner cylinder. A more detailed explanation of the error bounds on
χ can be found in Aubert et al. (2001, appendix A 3).

We have constructed two types of diagnostic measurements of the fluid flow:
(a) The radial root-mean-square (r.m.s.) velocity profile is given by

Ũrad(s) = (〈[us − 〈us〉τ ]
2〉τ )

1/2,

where the operator 〈· · ·〉τ = 1
τ

∫
τ
. . . dt . The time-average of the radial flow 〈us〉τ (which

should be zero in the case of a geostrophic flow) is the signal of the centripetal force
(resp. centrifugal) acting on particles lighter (resp. denser) than the surrounding fluid.
During an experiment, the average radial velocity 〈us〉τ does not change with the
integration period τ . However, 〈us〉τ differs and even changes sign from experiment
to experiment, with amplitudes up to 2 mm s−1. It is concentrated near the tangent
cylinder (see figure 3b). 〈us〉τ is assumed to be axially symmetric during an experiment.

(b) The mean zonal velocity profile is given by the projection of the transverse
velocity profile along the azimuthal direction

U zon(s) =
s〈uχ〉τ

ro sinχ
.

Owing to electromagnetic noise inherent to the experimental set-up, simultaneous
measurements of the radial and transverse velocity profiles were not possible. We
have therefore not taken into account the centripetal (or centrifugal) velocities in
azimuthal velocity profiles, though one order of magnitude smaller than the mean
zonal flow. Thus we have considered that the radial velocity does not alter the
projection of the mean zonal flow along the transverse beam line.
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Figure 3. Radial velocity profiles obtained from ultrasonic Doppler velocimetry during
a convection experiment performed in gallium with Ω =600 r.p.m. and �T =19.8 K
(E = 9.74 × 10−6, R = 4.3Rc). (a) Measured velocity us(s, t) as a function of time and radius.
The colour scale ranges from −12mm s−1 (black) to +12 mm s−1 (white). (b) Post-processed
velocity with a 2.5 s sliding window median filter (unchanged colour scale) (c) R.m.s. radial
velocity profile Ũrad(s) and mean radial velocity 〈us〉200 s extracted from the time series in
(a). Errorbars, calculated at each radius, come from an estimate of the electromagnetic noise
impact on our velocity measurement (see Gillet 2004 for more details).

Our measurements of velocity slightly differ from those of Aubert et al. (2001),
since an improved signal processing has been used: we have benefited from a more
recent apparatus and we have been able to average the signal on longer times τ (more
than 10 times the typical period of the chaotic fluctuations of the fluid, e.g. from 3
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Figure 4. Transverse and zonal velocity profiles obtained from ultrasonic Doppler velocimetry
during a convection experiment performed in gallium with Ω =300 r.p.m. and �T = 21.4K
(E = 1.95 × 10−6, R = 2.6 Rc). (a) Post-processed measured velocity uχ (s, t), in mm s−1, as a
function of time and distance from the probe – post-processed with a 2.5 s sliding window
median filter. The horizontal dashed line indicates the distance at which the transverse beam
line is the closest to the tangent cylinder (see figure 2). (b) Mean transverse velocity profile
〈uχ 〉300 s . (c) Mean zonal velocity profile U zon(s).

to 10 minutes). In order to remove electromagnetic noise, we have processed all our
velocity profiles with a 15-point median filter sliding window (equivalent to 2.5 s).

The effect of that data processing on radial velocities is seen in figure 3(b), which

shows a typical example of a radial r.m.s. velocity Ũrad(s) and the associated centripetal
velocity, extracted from us(s, t) in figure 3(a). The alternating sign of the radial
velocities in figure 3(a) is the signature of the vortices passing the radial ultrasonic
probe. The uncertainty of the measurements in our parameter regime can be lowered
to around 0.1 mms−1 when the signal is averaged over several periods of the chaotic
fluctuations of the fluid. The amplitude of the error bars shown in figure 3 also
depends on the seeding of the fluid with backscattering particles: this parameter is
extremely difficult to control, in particular in the gallium experiments. More details
about data processing and error bar estimates are given in Gillet (2004). Figure 4
shows typical velocity measurements obtained with the transverse probe. As will be
discussed in detail in § 4 and § 5, we observe zonal jets, either steady or time varying.
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In our experimental set-up, a thermal wind should arise because isodensity and
isogravity surfaces are not parallel. The thermal wind should have a constant sign and
should increase monotically with s. Theoretical estimates of these azimuthal velocities
scale as αΩs�T/2 (Busse 1970); in our experiment, the intensity of that thermal
wind should not exceed a few mm s−1. We have found no experimental evidence for
it and its theoretical amplitude is negligible compared to the mean zonal flow, which
is about ten times larger.

3. Quasi-geostrophic numerical model of convection in a rapidly rotating
spherical shell

3.1. Mathematical model of the experiments

We model thermal convection of a Boussinesq fluid between an outer sphere (spherical
radius ro) and a vertical inner cylinder (cylindrical radius si), the whole system rotating
with a constant angular velocity Ω ẑ. In order to mimic the experiment numerically,
gravity is cylindrical and increases linearly with radius as Ω2s, so that the gravity
gradient is γ = Ω2. We use no-slip boundary conditions for the velocity field at the
boundaries. The outer sphere is at constant temperature To. The inner cylinder is at
constant temperature Ti in its central part (|z| � ro/2) and the radial heat flux vanishes
(∂T (si)/∂s = 0) for ro/2 � |z| � ro. The continuity, momentum and heat equations in
dimensionless forms are

∇ · u = 0, (3.1)

du
dt

+
2

E
ẑ × u = −∇Π − R

P
(T − Tref )s ŝ + ∇2u, (3.2)

dΘ

dt
+ u · ∇T ic

cond = P −1∇2Θ, (3.3)

where u is the velocity field, Π is the modified pressure, T is the temperature of
the fluid, Tref is a reference temperature, T ic

cond is the temperature conductive profile
which satisfies the boundary conditions described above (the superscript ‘ic’ stands
for an inner cylinder), and Θ = T − T ic

cond. The dimensionless numbers in the set of
equations ((3.1), (3.2), (3.3)) are defined in table 1. These equations have been made
non-dimensional using �T = To − Ti as the unit of temperature, the gap d = ro − si as
the unit of length, and the viscous diffusive time d2/ν as the unit of time. From now on
in the paper ro, si , To and Ti will be non-dimensional. Gillet & Jones (2006) have used
instead the thermal diffusive time as they have derived scaling laws based on the local
Péclet number. We attempt to place our study of convection in the general frame
of quasi-geostrophic turbulence, which explains our choice of the viscous diffusive
time.

3.2. Quasi-geostrophic approximation of the momentum equation

We approximate the three-dimensional model ((3.1), (3.2), (3.3)) as a quasi-geostrophic
model. We assume that a geostrophic balance between the Coriolis force and the
pressure gradient dominates the fluid dynamics and we take the slope η of the
container boundaries as a small parameter. Denoting H =

√
r2
o − s2 the half-height

of a fluid column, we have η = −dH/ds = s/H .
The z-invariant geostrophic velocity field u0 is described through a stream func-

tion ψ:

u = u0 + O(η) with u0 = ∇ × ẑψ(s, φ, t)
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where O(η) represents the ageostrophic flow. Taking the z-component of the curl
of the momentum equation (3.2), and averaging over z, an equation for the vertical
component of the vorticity at leading order is obtained:

∂ζ 0

∂t
+ (u0 · ∇)ζ 0 − [ ẑ · u]+H

−H

EH
=

R

P

∂

∂φ
〈Θ〉z + ∇2

Hζ 0 (3.4)

for si � s � r0, with

ζ = ẑ · ∇ × u = ζ 0 + O(η)

and ζ 0 = −∇2
Hψ(s, φ, t).

∇2
H =

1

s

∂

∂s

(
s

∂

∂s

)
+

1

s2

∂2

∂φ2

is the horizontal Laplacian operator (z derivatives removed),

〈· · ·〉z =
1

2H

∫ +H

−H

· · · dz

is the z-average. From now on, we will remove the superscripts 0 for simplification.
The no-slip boundary conditions are given by

ψ =
∂ψ

∂s
= 0 at s = si, ro. (3.5)

Except for the choice of coordinate system, and the boundary conditions, our
problem reduces to equation (4.1a) of Busse (1986). The quasi-geostrophic approxima-
tion is a priori valid only for η � 1, but we use it even though η −→ ∞ as s −→ ro.
The validity of this extension has previously been argued for both linear and finite-
amplitude rotating convection in spherical shells (Yano 1992; Cardin & Olson 1994;
Aubert et al. 2003; Morin & Dormy 2004).

In order to complete the quasi-geostrophic approximation of the equation of
motion, we have to model the small flow induced by the Ekman layer attached to the
outer sphere, and therefore model no-slip boundary conditions. Mass conservation in
the Ekman layer entails flow pumping into the layer. Its component normal to the
boundary can be written (Greenspan 1968)

{u · n}|±H = −E1/2

2
n · ∇×

[
n × ub ± ub

√
n · ez

]
, (3.6)

where ub is the velocity in the fluid interior, and n is the outward unit vector normal
to the boundary. Thus, we obtain

±uz |±H =
ro

H
{u · n}|±H − ηus. (3.7)

Substituting the expressions (3.7) and (3.6) in (3.4) gives (Schaeffer & Cardin 2005)

∂ζ

∂t
+ (u · ∇) ζ + βus =

R

P

∂

∂φ
〈Θ〉z + ∇2

Hζ + E−1/2Φ(u)

with

Φ(u) = −
( ro

H

)3/2
[
ζ +

s

2H 2
uφ − s

H 2

∂us

∂φ
+

5

2

ros

H 3
us

]
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.8)

The parameter β , given here in its dimensionless form

β(s) =
2η

EH
=

2s

EH 2
, (3.9)



Experimental and numerical studies of convection 95

is equivalent to the latitudinal variation of the Coriolis parameter that enters the
β-plane equations for flows in a shallow-layer system. The description of the motions
through the vorticity equation (3.8) is defined up to an arbitrary gradient function,
which corresponds to axially symmetric azimuthal motions (Plaut & Busse 2002). We
find it convenient to separate the axisymmetric from the non-axisymmetric flow:

u = ũ + u = ũs(s, φ, t) ŝ + [uφ(s, t) + ũφ(s, φ, t)]φ̂.

denoting the average over φ by an overbar. Similarly, the vertical component of

the vorticity is written ζ (s, φ, t) = ζ̃ (s, φ, t) + ζ (s, t), where ζ = s−1∂(suφ)/∂s and

ζ̃ = s−1[∂(sũφ)/∂s − ∂ũs/∂φ] are associated respectively with the axisymmetric and
the non-axisymmetric flows. On the one hand, we infer an equation for the non-
axisymmetric motions – which we call for brevity the ‘convective’ motions – from the
non-axisymmetric part of the vorticity equation (3.8) − (3.8)

∂ζ̃

∂t
+ (ũ · ∇)ζ +

uφ

s

∂ζ̃

∂φ
− (ũ · ∇)ζ̃ + βũs =

R

P

∂

∂φ
〈Θ〉z + ∇2

H ζ̃ + E−1/2Φ(ũ). (3.10)

On the other hand, the zonal wind equation comes from the axisymmetric component
of the momentum equation (3.2), projected along φ̂ and integrated along the z-axis.
We thus avoid one derivation of the ψ function. As the buoyancy and pressure terms
vanish, we obtain (Aubert et al. 2001)

∂uφ

∂t
+

(
ũ · ∇

)
ũφ =

∂

∂s

[
1

s

∂

∂s

(
suφ

)]
−

√
ro

H

uφ

E1/2H
. (3.11)

The no-slip boundary condition yields

uφ = 0 at s = si, r0. (3.12)

In the study by Aubert et al. (2003), Ekman pumping is only included in equation
(3.11) for the axisymmetric flow (i.e. they considered Φ(ũ) = 0). Here we take into
account this effect for the whole geostrophic flow. We will present in § 3.4 a comparison
of the numerical simulations with and without Ekman pumping at the onset of
convection.

3.3. Quasi-geostrophic approximation of the heat equation

We now transform the heat equation into a two-dimensional equation using the
quasi-geostrophic approximation. Integrating (3.3) along the ẑ-direction in the bulk
of the fluid gives at leading order[

∂

∂t
+ (u · ∇) − P −1∇2

H

]
〈Θ〉z+ũs

d

ds

〈
T ic

cond

〉
z
= −

〈
uz

∂T

∂z

〉
z

+
P −1

2H

[
∂Θ

∂z

]+H

−H

. (3.13)

On the right-hand side of (3.13), we have put together the advection and diffusion
terms along ẑ. Taking into account that the vertical velocity is linear along the ẑ-axis,
we can estimate the advection term as〈

uz

∂T

∂z

〉
z

= − η

H
ũs

[
To

�T
− 〈T 〉z

]
.

Since the typical equatorial size in rapidly rotating convection is small compared to
the height 2 H of a fluid column (Busse 1970, see also § 3.4), the vertical diffusion of
temperature is negligible compared to the equatorial diffusion. This is no longer true
in the thermal boundary layers on the sphere. A three-dimensional description of Θ
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Figure 5. (〈T ic
cond〉z − Ti/�T ) (dashed line) and (T ic 2D

cond − Ti/�T ) (solid lines) as a function of
the cylindrical radius s, obtained from equation (3.14). The two profiles are normalized to �T .

would thus be necessary to estimate the diffusion of temperature along ẑ and the
heat flux, at the outer sphere surface, as a function of latitude. The case P � 1 may
be particularly amenable to such a treatment, since the temperature field is diffused
away more rapidly than the velocity field (and thus is smoother). A three-dimensional
mesh, looser than the equatorial mesh used for the velocity field, could then be used to
describe the temperature field, without the computations being too time-demanding.

We have nevertheless chosen to keep a two-dimensional description of Θ that
overestimates the equatorial heat flux for a given forcing (vertical heat flux ignored).
Then the static temperature profile 〈T ic

cond〉z in equation (3.13) does not satisfy the
equation ∇2

HT = 0. We have approximated this profile by T ic 2D
cond , the solution of

the latter equation that satisfies the boundary conditions T ic 2D
cond (si) = 〈T ic

cond〉z(si) and

T ic 2D
cond (ro) = To/�T . This profile is (Aubert et al. 2003)

T ic 2D
cond (s) =

〈
T ic

cond

〉
z
(si) + ξ ic ln (s/si)

ln (ro/si)
, (3.14)

with ξ ic = To/�T − 〈T ic
cond〉z(si) the ‘effective’ temperature drop. T ic

cond has been calcu-
lated numerically with a relaxation method, using the thermal boundary conditions
described in § 3.1 (inner cylinder, outer sphere). The calculation gives ξ ic 
 0.656.
We compare in figure 5 the z-integrated three-dimensional profile 〈T ic

cond〉z with the
two-dimensional static profile T ic 2D

cond . One can note that those two profiles are rather
similar. That leads us to write the heat equation (3.13) as follows:

∂

∂t
〈Θ〉z + (u · ∇H ) 〈Θ〉z + ũs

d

ds
T ic 2D

cond = P −1∇2
H 〈Θ〉z . (3.15)

The temperature perturbation satisfies the boundary conditions

〈Θ〉z = 0 at s = si, r0 . (3.16)

We use a finite differences (resp. spectral) decomposition in the radial (resp.
azimuthal) direction to describe the ψ and 〈Θ〉z fields. The system ((3.10), (3.11),
(3.15)), together with the boundary conditions ((3.5), (3.12), (3.16)), is numerically
solved using an implicit Crank–Nicholson scheme for the linear terms, except for
the buoyancy term in equation (3.10) and the advection of the static profile T ic 2D

cond

in equation (3.15). These two terms, as well as the nonlinear terms, are computed
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with an explicit Adams–Bashforth scheme. We have used up to 400 grid points in the
radial direction and up to 200 modes in the azimuthal direction.

3.4. Onset of convection; impact of the Ekman pumping

We now describe the main characteristics of the instability threshold: we compare
linear numerical calculations performed using our quasi-geostrophic model with
three-dimensional calculations of the onset of rapidly rotating convection between
two spheres.

The onset of thermal convection in rapidly rotating systems with spherical symmetry
was first studied by Roberts (1968) and Busse (1970) (internally heated spheres).
These approaches describe the most unstable mode as a thermally driven Rossby
wave. This result can be extended to thermal convection in a spherical shell in which
a temperature difference is maintained between the inner and outer spheres (see e.g.
Dormy et al. 2004). Then, the wave is localized adjacent to the cylinder tangent to the
inner sphere. The parameter βi = β(si) is evaluated from the height Hi = H (si) and
the slope ηi = η(si) of the outer boundary at its intersection with the tangent cylinder.
Roberts (1968) and Busse (1970) have given the dependence of the critical parameters
(the Rayleigh number Rc, the wavenumber mc and the frequency ωc) as functions of
the dimensionless parameters:

Rc ∼ (Pωc)
2 ∼ m4

c ∼
[

βi

1 + P −1

]4/3

=

[
ηi

EHi(1 + P −1)

]4/3

. (3.17)

For large values of P , one has 1 + P −1 
 1 so that the diffusivity governing the critical
parameters in (3.17) is the kinematic viscosity. As the Prandtl number decreases, the
convective cells become more and more spiral (Zhang 1992b; Yano 1992). For even
weaker values of P , Zhang & Busse (1987) have shown that the thermal instability
can take the form of an equatorially trapped inertial wave (see further studies by
Zhang 1992a , 1993). Numerical studies by Ardes, Busse & Wicht (1997), and more
recently by Plaut & Busse (2005), have shown that this kind of wave requires a
relatively moderate rotation rate to appear (2 × 10−2P 2 < E � 1).

In our experimental study with gallium (P = 0.025) the rotation rates and
temperature contrasts correspond to convection that develops first as spiral modes.
One has 1 + P −1 
 P −1 so that the role played by the Ekman number in equa-
tion (3.17) for large P is taken over by the thermal Ekman number, and the convection
onset depends now on the thermal diffusivity. This leads to much larger typical values
of �Tc in gallium than in water (see table 1).

Gillet & Jones (2006) give an extensive justification of the quasi-geostrophic
approximation at the onset of convection. We complete their work by noting that
incorporating the Ekman pumping term in the model improves the agreement with a
fully three-dimensional modelling. Dormy et al. (2004) studied the onset of convection
between two isothermal spheres (radii ri and ro, temperatures Ti and To) in the
differential heating case for P = 1; their static temperature profile is

T is
cond(r) =

roTo − riTi

d�T
− rori

rd
,

where the superscript ‘is’ stands for an inner sphere. Note that in the quasi-geostrophic
representation the internal boundary is cylindrical, as opposed to spherical in the
three-dimensional computations. In order to make the comparison relevant, we have
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Figure 6. Numerical simulations at the onset of convection in a rapidly rotating shell, in the
differential heating case, with no-slip boundary conditions, for P =1 and si/ro = 0.35. Ratios
between the critical parameters (Rc, ωc,mc) obtained with the quasi-geostrophic simulations,
and the critical parameters obtained with the three-dimensional simulations by Dormy et al.
(2004) using no-slip boundary conditions, as a function of E−1. Calculations are performed
with (triangles) and without (circles) the Ekman pumping (EP) in the quasi-geostrophic
approximation case, with ξ is = 0.453.

imposed in our simulation the following thermal boundary conditions

T is 2D
cond (ro) =

To

�T
and T is 2D

cond (si) =
〈
T is

cond

〉
z
(si),

which gives (Aubert et al. 2003):

T is 2D
cond (s) =

〈
T is

cond

〉
z
(si) + ξ is ln (s/si)

ln (ro/si)
,

with

ξ is =
si

d

[
ro

Hi

arcsh

(
Hi

si

)
− 1

]
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.18)

For the aspect ratio si/ro = 0.35, we find in the case of both inner and outer spherical
boundaries ξ is 
 0.453 (instead of ξ ic 
 0.656 in the previous experimental case
with an inner cylinder and an outer sphere, cf. § 3.3). Using also the study by
Dormy et al. (2004) down to E = 4.74 × 10−7, Aubert et al. (2003) had found that
the quasi-geostrophic approach provides a good estimate of the parameters at onset
of convection (in their study the Ekman pumping was only introduced for the
axisymmetric motions and this played no role for the onset of convection). Down
to similar values of the Ekman number we complete this comparison by including
the Ekman pumping term for the non-axisymmetric modes, as shown in figure 6.
It appears that the quasi-geostrophic calculation for Rc converges toward a value
closer to the correct one when the Ekman pumping is included. The wavenumbers
are similarly less overestimated when the Ekman pumping is included (10 % versus
15 % discrepancies at the lowest values of E) and consequently the error made in the
frequency is also reduced.
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P = 7 P = 0.025
Rc mc ωc Rc mc ωc

Without Ekman pumping 1.39 × 107 24 328 6.09 × 106 13 13000
With Ekman pumping 1.31 × 107 22 276 6.71 × 106 14 12680

Table 4. Critical parameters at the onset of convection obtained from quasi-geostrophic
numerical simulations, with and without Ekman pumping, for P = 7 (E = 6.5 × 10−6), P = 0.025
(E = 1.95 × 10−6), and with si/ro = 4/11 (ξ ic = 0.656).

P E (×10−6) Ω (r.p.m.) Rc (×106) �Tc (K) ωc τc (s) mc

2.92 200 4.29 11.6 9760 10.7 12
0.025 1.95 300 6.76 8.2 12720 8.2 14

0.97 600 15.19 4.6 20080 5.2 17

9.74 200 8 0.54 210 146.6 20
6.50 300 13.2 0.40 276 111.5 22

7 4.87 400 19 0.32 336 91.6 24
3.25 600 31.7 0.24 441 69.8 27
2.44 800 38.6 0.19 536 57.4 30

Table 5. Critical values at the onset of convection (Rayleigh number, temperature difference,
frequency, period τc = 2πd2(νωc)

−1 and wavenumber of the thermal Rossby wave) as a function
of the rotation rate Ω (or E) used in the experiments, for gallium (P = 0.025) and for
water (P = 7). Values obtained from quasi-geostrophic numerical simulations with the Ekman
pumping term included.

The influence of the no-slip boundary condition on the convection threshold
depends on P . We notice in table 4 a destabilizing effect at P =7, as opposed
to a stabilizing effect at P = 0.025. This agrees qualitatively with both the three-
dimensional computations and the analytical study of Zhang & Jones (1992). In
accordance with their study, we also find a more pronounced decrease in the frequency
at large values of P , and opposite effects on the wavenumber: an increase (decrease)
at weak (large) Prandtl numbers. However Zhang & Jones (1992) show an Ekman
friction impact on the critical parameters of O(E∗1/6), which we do not retrieve in
figure 6.

The critical parameters at the convection threshold for the range of parameters
of our experiment are determined numerically with our simulations; they are given
in table 5. The values of the critical Rayleigh numbers Rc determined numerically
will be used as an input for the experiments, as the onset of convection cannot be
accurately determined in our experimental set-up.

4. Thermal convection in a rapidly rotating spherical shell in a
low-Prandtl-number fluid

4.1. Velocity measurements in convection experiments performed in gallium

Our experiment in liquid gallium remains in a range of forcings close to critical
(R/Rc � 6), because of the high thermal diffusivity of liquid metals such as gallium.
Thus the mean temperature profiles should remain close to the conductive one. The
flow is turbulent however, and we measure large velocities, up to 3 cm s−1. In their
liquid sodium experiments, Shew & Lathrop (2005) were able to estimate the heat
flux, and found that the Nusselt number, ratio of the total heat flux to the heat flux



100 N. Gillet, D. Brito, D. Jault and H.-C. Nataf

(a) (b)

(c) (d )

40 50 60 70 80 90 100 40 50 60 70 80 90 100
0

1

2

3

E = 2.92 × 10–6

R = 2.3 Rc

E = 1.95 × 10–6

R = 2.9 Rc

E = 9.74 × 10–7 E = 9.74 × 10–7

R = 3.5 Rc

0

1

2

3

4

5
~ U

ra
d 

(m
m

 s
–1

)
~ U

ra
d 

(m
m

 s
–1

)

0

1

2

3

4

5

6

7

s (mm)

0

2

4

6

8

s (mm)

R/Rc = 3.1
R/Rc = 3.5
R/Rc = 5.0

40 50 60 70 80 90 100 40 50 60 70 80 90 100

Figure 7. R.m.s. radial velocity profiles Ũrad as a function of radius s measured during con-
vection experiments performed in gallium for various E and various R/Rc . The measurements
are averaged over a period τ from 200 to 400 s in (a)–(d).

carried along the conductive temperature profile, is of order 2 at maximum. They
have nevertheless indirectly detected velocities up to about ten times larger than ours.
This supports the statement that for P � 1, the convection close to onset produces
highly turbulent flows.

The velocity profiles Ũrad(s) for the r.m.s. radial motions and U zon(s) for the
azimuthal flow, obtained from measurements in gallium after averaging over long time
intervals, are illustrated in figures 7 and 8. These averages change very little throughout
all experimental runs with gallium. We compare velocities that are measured at
different Ekman and Rayleigh numbers.

At first order, the shapes of the r.m.s. radial velocity profiles on the one hand
(figure 7) and the shapes of the azimuthal profiles on the other hand (figure 8),
remain identical in the range of parameters that we cover, the amplitude of the
velocities depending on the forcing (R/Rc). The maximum of the r.m.s. radial velocity,
relatively close to the inner cylinder, is followed by a smooth decrease towards the
outer boundary. The mean azimuthal flow, the so-called zonal flow, is retrograde near
the inner cylinder and then increases in a broad region to eventually change into a
small prograde zonal flow at the outer boundary.

At second order, it can also be seen in figures 7(d) and 8(d), where E is fixed and
R/Rc increased, that the radius at which the r.m.s. velocity is maximum (or similarly
at which the zonal flow is minimum) increases as a function of the forcing. In other
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Figure 8. Zonal velocity profiles U zon as a function of radius s measured during convection
experiments performed in gallium with various E and various R/Rc . The measurements are
averaged over a period τ from 200 to 400 s in (a)–(d).

words, the size of the convective zone increases with R/Rc. It is not easy to disentangle
the possible influence of the Ekman number (or more plausibly the thermal Ekman
number) on the size of the convective region or the width of the retrograde zonal
jet – figures 7(a, b, c) and 8(a, b, c) – from the effect of the forcing strength. These
observations are discussed in § 4.3. Note that the amplitude of the zonal flow is about
three times the amplitude of the radial flow in these gallium experiments.

4.2. A comparison based on convective motions

Following Aubert et al. (2003), we compare velocities measured in the experiments
with velocities obtained in the quasi-geostrophic numerical models for a given value
of the convection vigour, which we estimate here as

Ũ =

[
1

V

∫
V

Ũrad(s)
2
dV

]1/2

,

where V is the total volume filled with fluid and Ũrad(s) is defined in § 2.2. Note that

Ũ is also a global kinematic Reynolds number based on the thickness d of the shell.
Similarly we measure the zonal wind intensity as

U =

[
1

V

∫
V

U zon(s)
2
dV

]1/2

.
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Such definitions suit water measurements where the profiles are available for all
radii (see § 5). However, integrating over the whole radius is not possible in gallium
since the ultrasonic apparatus fails to measure velocities close to the outer sphere,
as seen for example in figure 3(a, b). For comparisons between computations and

experiments in gallium we use instead Ũ ∗ = max{Ũrad(s)} and U
∗
= max{−U zon(s)}.

Such definitions of the characteristic radial and zonal velocities were chosen because
they turn out to be the most reproducible experimental data. The velocity profiles in

gallium, Ũrad and U zon, are smooth, stable in time, and gently evolve in the explored
range of parameters. Then the influence of the norm is not crucial, as we verify with
our quasi-geostrophic numerical calculation (see figure 12).

A comparison between the velocities measured in a gallium experiment and
computed in the corresponding quasi-geostrophic simulation is shown in figure 9. In

figure 9(a, b), we compare, for a given value of Ũ ∗, the spatio-temporal evolution
of the radial velocity ũs(s, t) measured experimentally to the quasi-geostrophic
numerical reconstruction of the same velocity component. From these, we extract

the experimental and numerical r.m.s. radial velocity profiles Ũrad(s), shown in

figure 9(c). For the same value of Ũ ∗, figure 9(d) shows a comparison between the
experimental and numerical zonal profiles U zon(s). Since we were not able to measure
both profiles simultaneously with our ultrasonic Doppler velocimetry technique, zonal
and radial experimental profiles come from different experimental runs but with the
same imposed temperature difference �T . At first order, figure 9(a, b, c) displays a
remarkable agreement between experiments and numerics: for a given experimental

Ũ ∗, the quasi-geostrophic simulation reproduces the correct shape of the experimental
radial profile as well as the experimental amplitude and shape of the zonal wind.
On the other hand, we find that for a given value of R/Rc, convection is more
vigorous in the quasi-geostrophic calculation than in the experiment. As mentioned
in § 3.3, thermal boundary layers attached to the outer sphere are not modelled in
our simulations. As a result, experiments and numerical simulations conducted at the
same Rayleigh number do not match.

As mentioned in § 4.1, the convective activity is concentrated in the first few
centimetres near the inner cylinder (figure 9a, b) and is associated with a strong

retrograde zonal flow (figure 9c). Notice however that for a given Ũ ∗, the convection
seems to occupy a larger area in the experiment than in the quasi-geostrophic
simulation. The velocity measurements also show a – poorly constrained – prograde
zonal flow arising near the outer sphere, in qualitative agreement with the quasi-
geostrophic numerical calculations.

A retrograde zonal flow near the inner cylinder has also been predicted from an
analytical study of weak-amplitude convection (Plaut & Busse 2005). Herrmann &
Busse (1997) and Plaut & Busse (2002) described the associated vacillating convection
arising in the weakly nonlinear regime at low P . Figure 10 illustrates this behaviour
for E = 1.95 × 10−6, in numerically calculated time sequences of the kinetic energies

Ẽ(t) =
1

V

∫
V

ũ(s, φ, t)2 dV and E(t) =
1

V

∫
V

u(s, t)2 dV,

associated respectively with the r.m.s. and the mean zonal flows. At R/Rc =1.4, any
periodicity in the time evolution is lost.

We now interpret the retrograde zonal flow near the inner cylinder in the fully
developed convection regime. The observed shear flows are associated with a ring of
anticyclones around the inner cylinder and a – less pronounced – cyclonic area at
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Figure 9. (a, b) Radial velocity as a function of time and radius for P = 0.025, E = 9.74 × 10−7

and a given value Ũ ∗ = 1630 (equivalent to 7 mm s−1). From ultrasonic Doppler velocimetry (a)
and quasi-geostrophic simulations (b). The colour scale goes from −10 (black) to +10 mm s−1

(white). Rayleigh numbers are respectively R =4.7 Rc (experiment) and R = 2 Rc (simulation).
(c) Corresponding radial velocity profiles Ũrad(s), and (d) corresponding zonal velocity profiles
U zon(s), from an experiment (black) and a quasi-geostrophic simulation (grey).

larger radii. This relationship between the signs of the vorticity field and of the zonal
flow can be accounted for by the conservation of the potential vorticity ζ − 2 Ω lnH ,
a quantity kept constant when the sources and sinks of vorticity, on the right-hand
side of (3.8), can be neglected (Aubert et al. 2001, 2002). As convection becomes
more intense a dissymmetry builds up between thin and fast upwellings on the one
hand, and wider and slower downwellings on the other hand (the former driving the
dynamics in terms of vorticity). The upwellings gain negative relative vorticity (they
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Figure 11. Amplitude of the mean radial velocity Ũ ∗ (Reynolds number) as a function of
(R/Rc − 1), for P = 0.025 and different values of E. From experimental ultrasonic Doppler
velocimetry (open symbols) and numerical simulations (grey symbols). The grey symbols are
at the same E value as the corresponding black symbols. The dispersion between experimental
points gives a hint of the error bars. The circled symbols refer to the profiles of figure 9(b).

are anticyclonic) because the height of a fluid column is reduced as it moves away
from the inner cylinder.

All the experimental measurements and numerical estimations of the radial motions

Ũ ∗ are compiled in figure 11. Again, the numerical simulations overestimate Ũ ∗

because of the lack of thermal boundary layers as mentioned previously. All the
experiments, remarkably, align on the same line as a function of (R/Rc −1); although
the parameter (R/Rc − 1) seems sufficient to scale the vigour of the convection
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whatever the Ekman number, the quasi-geostrophic simulation suggests that this
is true only at first order. The shrinking experimental range of R/Rc values as E

becomes larger is partly responsible for that picture, which must be considered with
caution. This point will be detailed in § 4.3.

4.3. Latitudinal length scale and amplitude of the mean zonal flow

In our gallium experiments, the energy of the mean zonal flow makes up most of the
kinetic energy, as in models of turbulence in a β-plane. We extract from the equation
(3.8) the Rhines balance between the Coriolis and the nonlinear inertial terms:

ũs

∂ζ

∂s
∼ βũs. (4.1)

Introducing the Rhines scale �β associated with the radial shear of the mean zonal

flow, we evaluate the mean vorticity as ζ ∼ U/�β , and approximate (4.1) by

Ũ
U

�2
β

∼ βŨ. (4.2)

The Rhines scale can then be written as

�β ∼

√
U

β(s)
. (4.3)

We can combine this result with equation (3.11) where we neglect the first term
on the right-hand side (volume friction). This term, indeed, plays almost no part
in convection onset, where the scaling is derived from the thermal diffusivity, and
it should be even more negligible in fully developed convection, where the typical
length scale increases. Thus the main brake on the zonal wind generation consists
of the Ekman friction at the top and bottom boundaries, whilst the main source of
zonal wind in equation (3.11) is the axisymmetric component of the Reynolds stress

(ũ · ∇)ũφ ∼ Ũ 2/�β . Then the balance between Reynolds stress and Ekman friction in
equation (3.11) is expressed using (3.9) as

Ũ 2

�β

∼
√

roβ

2sH
U. (4.4)

The increase of β(s) with s is a distinctive feature of the full sphere geometry: here its
impact on the Reynolds term through �β (in β(s)1/2 on the left-hand side of (4.4)), is
exactly compensated by its impact on the top and bottom friction term (in β(s)1/2 on
the right-hand side of (4.4)). Together with the expression (4.3) for the Rhines scale,
equation (4.4) leads to

Ũ 2 ∼
√

ro

2sH
U

3/2
. (4.5)

Finally β(s) disappears in (4.5), so that this scaling law holds irrespective of the
rotation rate. Note that the viscosity still plays a role (the dimensionless velocities are
scaled using the viscous time scale d2/ν), since the Ekman friction on the zonal flow
is a key point when deriving this scaling law. Equation (4.5) can be rewritten(

ro

2sH

)1/3

U ∼ Ũ 4/3. (4.6)
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Figure 12. (a) Mean zonal velocity as a function of the mean radial velocity obtained from
numerical simulations, for P = 0.025 and different values of E. Both norms presented in § 4.2

have been used: {Ũ , U} from integrated profiles in volume (black), and {Ũ ∗, U
∗} from their

extremum value (grey). The best fit, U = (0.25 ± 0.02) Ũ 1.31 ± 0.06 is computed from all the
simulations, except the three closer to the onset at E =1.95 × 10−6 which present vacillating
convection (see figure 10). (b) Mean zonal velocity U

∗
(black symbols) and derived law

0.25 Ũ ∗1.31 (grey symbols) obtained in (a) as a function of R/Rc − 1, from experimental
measurements performed in gallium for several E.

Interestingly the geometrical prefactor in front of U in equation (4.6) varies very
weakly as a function of s (if we except the area close to the equator where it
diverges). The variation is only 12% in a length in s covering 91% of the whole gap
d . It is then reasonable to neglect the radial evolution of the prefactor in (4.6), so
that we infer the relation

U ∼ Ũ 4/3. (4.7)

Figure 12(a) shows that the relation (4.7) is numerically satisfied with the evolution of
the zonal wind as a function of the radial velocity with an exponent 1.31, close to the
exponent 4/3. One can also check that this trend does not depend on the choice of

the velocity norms – either {Ũ , U} or {Ũ ∗, U
∗}. Similarly, figure 12(b) demonstrates

that the zonal and radial velocities measured in the gallium experiments also closely
follow the prediction (4.7).

Coming back to the definition of �β obtained in (4.3), it appears that the length

scale associated with the radial shear of the zonal flow should increase as U
1/2

. The
vorticity maps and the associated mean zonal flows in figure 13(a–d) obtained in
the numerical simulations do indeed indicate that this length scale increases with
the vigour of the convection. That increase is further demonstrated in figure 13(e, f)
where it is seen that the size of the convective zone deduced both from the radial
and the azimuthal profiles increases as a function of R/Rc. Looking quantitatively

at the results of these simulations, �β does not increase as rapidly as U
1/2

however.
We attribute this observation, which conflicts with the confirmation of (4.7), to the
increase of β with s as the main zonal jet is enlarged. In other words the reverse
cascade occurs, but the Rhines scale toward which it converges is decreased by the
curvature of the spherical boundary. The growth of �β is also limited because it is
already relatively large in comparison with the gap d . This kind of experiment would
require a faster rotation rate – or a larger size – in order to decrease the Rhines scale.
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U zon as a function of radius s, corresponding to the numerical simulations shown in (a–d) plus
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12667.
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With smaller columns, one would not only reduce the effect of curvature, but also
increase the range of admissible length scales.

Note finally that looking at radial profiles only we miss part of the information
about the typical length scale. In particular we detect in figure 13(a–d) an elongation
of the vortices along φ̂ at the larger forcings. We understand this as a signature of the
β-plane anisotropy associated with the zonal wind generation (e.g. Read et al. 2004).
As a consequence the vorticity field becomes increasingly dominated by the radial
shear of the azimuthal flow. We have tried to distinguish between the radial and
azimuthal components of the non-zonal motions numerically, but it amounts only to
a very tiny effect. At larger forcing however a more detailed scaling might be needed,
where one distinguishes between the radial and azimuthal r.m.s. motions and length
scales.

5. Thermal convection in a rapidly rotating spherical shell in a
high-Prandtl-number fluid

5.1. Velocity measurements in convection experiments performed in water

We now compare the experiments performed in water (P =7) with our numerical
simulations. As �Tc is much smaller in water than gallium (see table 5), highly
supercritical convection is studied. Our measurements in gallium and in water allow
us to document differences between rotating convection at respectively low and large
Prandtl number.

In convection in water at moderate R/Rc, a much smaller part of the kinetic energy
is transferred to the mean zonal flow. We thus expect a scenario different from the one
that leads to the inertial regime, characterized by the Rhines scale �β (see § 4.3). As

long as E � Ẽ, Danilov & Gurarie (2004) suggest that the enlargement of the cells is
stopped by the external friction for each vortex, which means that the reverse cascade
does not occur. Exploring this parameter regime, Gillet & Jones (2006) find that the
jet length remains close to the critical size �c (see § 5.2). Increasing R/Rc further, if

E grows faster than Ẽ, the forcing will necessarily reach a level at which the kinetic
energy transferred into the zonal wind will dominate its convective cell source. Then
we expect the Rhines scenario to come back (see § 5.3).

Convective velocities are smaller in water than in gallium since they are scaled by
the kinematic viscosity, which is much lower than the corresponding scaling parameter
in gallium, which is its thermal diffusivity κ . The viscous term plays a role at the onset
and it keeps this role as long as the typical length scale of the convective motions
has not significantly increased. Figure 14 shows typical measurements of velocities
performed in water in this regime where R � 40Rc. We find that for moderate Rayleigh
number R � 40Rc, the energy of the zonal motions makes up a small fraction of the
total energy as can be seen directly by comparing the velocities in figures 14(b)
and 14(c). As in the experiments in gallium, most of the radial kinetic energy is
confined to the convective zone close to the inner cylinder (figure 14a). Extracting
mean zonal velocities from spatio-temporal transverse velocity measurements, in

these experiments in water where R � 40Rc, is rather challenging since Ũ � U .
Figure 14(c–e) demonstrates however that averaging the velocity profiles long enough
in time enables us to reconstruct mean zonal flows. The zonal velocities are highly
time-dependent and composed of multiple zonal jets, alternatively prograde and
retrograde as a function of the radius. The various tests of signal processing that we
have performed also indicate that the characteristic duration of these zonal jets is of
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Figure 14. Radial and zonal velocity profiles obtained during convection experiments
performed in water (P = 7) at various E and R/Rc . (a) Measured velocity us(s, t) in mm s−1

as a function of time and radius with E = 4.87 × 10−6, R = 31.2 Rc . (b) Radial profile Ũrad(s)
extracted from the time series in (a). (c–e) Zonal profiles U zon(s) for various E and R/Rc . The
measurements are extracted from time series 200 s long. The black, dashed and grey lines are
independent averages in time of the mean zonal flow, obtained after processing a 50 s long
record.

order 50 s, e.g. 5 to 10 times the characteristic vortex turnover time. These jets occur
on the convective vortex length scale �c, and this regime lasts to R � 40Rc.

Figures 15 and 16 show examples of velocity profiles as the Rayleigh number
becomes larger than about 40 times critical. As we can observe in particular in
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Figure 15. R.m.s. radial velocity profiles obtained during convection experiments performed
in water (P = 7). (a) Radial velocity us(s, t) in mm s−1 as a function of time and radius with
E =9.74 × 10−6 and R/Rc =64.2. (b–e) r.m.s. radial velocity profiles Ũrad as a function of
radius s for various E and R/Rc .

figure 16 compared to figure 14, the measured zonal velocity is now composed of
intense zonal jets, with amplitudes ten times larger than for low values of R/Rc. This
change in amplitude is presumably connected with a change in the number of jets, as
indicated by the comparison between figures 14 and 16. The radial velocities (figure
15) and zonal velocities (figure 16) in this regime of supercritical convection in water
are very stable in time, like the experiments performed in gallium described in § 4.1.
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Figure 16. Zonal velocity profiles obtained during convection experiments performed in water
(P = 7). (a) Transverse measured velocity uχ (s, t) in mm s−1 as a function of time and distance
to the probe, with E = 6.50 × 10−6, R = 56.4 Rc . (b–e) Zonal velocity profiles U zon as a function
of radius s for various E and R/Rc .

Also like the experiments in gallium, the size of the convective zone indicated by the
radial velocities increases as a function of R/Rc (figure 15c). It is also important to
notice that in figure 16(c), as the Rayleigh number increases with the Ekman number
kept constant, two intense zonal retrograde jets develops (instead of one in gallium).
In order to illustrate the abrupt change in the zonal velocity between the two regimes
for R/Rc either smaller or larger than 40, figure 17 represents the zonal velocity U
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Figure 17. Amplitude of the mean zonal velocity U as a function of (R/Rc − 1), measured
from ultrasonic Doppler velocimetry in water during convection experiments, for several values
of E.

(as defined in § 4.2) as a function of the forcing (R/Rc − 1) for all the experiments
performed in water.

5.2. Comparison at moderate R/Rc between experiments and numerical simulations

In the weakly nonlinear convection starting from spiral modes, numerical models
have exhibited a zonal wind composed of a single retrograde jet concentrated near
the tangent cylinder (Plaut & Busse 2002, 2005). By increasing the forcing up to a
few times critical, the convection occurs in an area of larger and larger radius. That
gives rise to multiple and unsteady jets with a short radial extent comparable with
the length scale �c of the vortices at the onset of convection, as proposed by Gillet &
Jones (2006).

Figure 18 shows the results of the quasi-geostrophic numerical simulation performed
at a moderate R/Rc for P = 7 and E = 6.50 × 10−6. This is a typical numerical
simulation at moderate R/Rc with a steady r.m.s. radial profile together with time-
dependent multiple jets in the zonal direction. Ekman pumping for the modes m �= 0
is crucial to obtain such multiple jets, in agreement with the suggestion by Danilov
& Gurarie (2004) of a halting scale provided by friction at the boundary. Jones,
Rotvig & Abdulrahman (2003) (for quasi-geostrophic-approximation simulations,
rotating annulus model with finite and constant slope of the endwalls, no-slip
boundary condition at the bottom surface, and stress-free boundary conditions at
the cylindrical walls and at the top surface) also found that bottom friction helps

to provide several jets in calculations where E ∼ Ẽ. A quantitative comparison of
the experiments in water at moderate forcing with the simulations shows that the
quasi-geostrophic-approximation calculation reproduces fairly well both the typical
shape and amplitude of the experimentally measured zonal and radial profiles of the
velocity. Moreover, the time dependence and the lifetime of the experimental zonal
jets are quantitatively well-reproduced numerically: as an example, figure 18 indicates
that the typical time scale of the numerical zonal jets is of the same order as the time
scales of the zonal jets measured experimentally in figure 14.
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Figure 18. Quasi-geostrophic numerical reconstruction of velocity profiles for convection,
P = 7, E = 6.50 × 10−6 and R = 25Rc . (a) R.m.s. radial velocity us(s, t) in mm s−1 as a function
of time and radius. (b) R.m.s. radial velocity profile Ũrad and (c) zonal velocity profile U zon

extracted from the time series in (a). The black, dashed and grey lines are independent 50 s
time averages of the mean zonal flow.

A detailed analysis of our computations (see also Gillet & Jones 2006) indicates
that for P � 1, the amplitude of the zonal wind results from a balance between
the volumetric viscous dissipation and the nonlinearities in equation (3.11). That

equilibrium, in the case where the critical length scale dominates, leads to Ũ 2/�c ∼
U/�2

c , e.g.

Re� = U�c ∼ Re�
2, (5.1)

where Re� = Ũ�c is the local Reynolds number. Note that the jet length scale �c ∼ β
−1/3
i

that arises in our case is specific to the deep rotating convection, where barotropic

thermal Rossby waves are excited (Busse 1970). In the case where E � Ẽ (and at

given Ekman and Prandtl numbers), a quadratic trend U ∼ Ũ 2 should replace the
balance (4.7), previously documented in gallium. It turns out that our computations
seem to follow such a quadratic law only if the convection is not too intense (namely

Ũ <O(20), see figure 20). This trend breaks down as multiple jets become excited. In
the strong zonal flow regime, the length scale �β must be larger than �c, which gives√

U

β(s)
� �c ∼ β

−1/3
i . (5.2)
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Figure 19. Quasi-geostrophic numerical reconstruction of velocity profiles for convection at
P = 7 and E =6.50 × 10−6. (a) Zonal velocity profiles U zon (in mm s−1) for R = 40Rc . The black,
dashed and grey lines are independent 50 s time averages of the mean zonal flow. (b) Zonal
velocity profiles U zon (in mm s−1) for several values of the forcing. For comparison with
figure 17 the values of volumetric mean of the zonal flow for the calculations performed at
R/Rc = 50, 100, and 200 are respectively U =72, 212 and 518.

This means that for the strong zonal flow regime to arise, the Reynolds number U must
become larger than a value that evolves as β(s)β−2/3

i ∼ E−1/3: the Reynolds number
at the transition between weak and strong zonal flow regimes should increase with
decreasing E. If the changeover in the pattern of zonal motions is always observed
above R/Rc 
 40, it is not clear from our measurements whether the transition occurs
at increasing values of R/Rc as E is decreased (see figure 17).

5.3. Large-amplitude zonal winds measured in highly supercritical convection
experiments

Our experiments in water present drastically different jet amplitudes and shapes as
R/Rc becomes larger than about 40 (figure 17). Such abrupt changes of the number
and the amplitude of the zonal jets have not been captured numerically in our model.
Our quasi-geostrophic computations show instead a rather smooth evolution of U

with the forcing. Nevertheless by increasing R/Rc far enough, we have reached a

parameter regime where E � Ẽ.
The work of Gillet & Jones (2006) based on the critical size �c also fails to explain

such a behaviour. This was somewhat expected since their weakly nonlinear analysis
(§ 3 of their paper) was developed for P → ∞, the zonal flow vanishing. For a large
(but finite) Prandtl number such as P = 7, if the domain of validity of their approach
can (surprisingly) be extended to relatively large values of R/Rc, it is still in a
parameter domain where U remains small.

Here the observed relationship between the number and amplitude of the zonal
jets is in qualitative agreement with the suggestion by Rhines of a balance between
inertial and Coriolis accelerations leading to an increase of the wavelength as the flow
is more energetic – see the discussion of the gallium experiments and expression (4.3).
Figure 16(c) also indicates that the zonal energy is redistributed between jets as the
forcing increases: the amplitude of the jet close to the inner cylinder weakens whereas
the second jet, which develops at a larger radius, strengthens as R is increased. Instead
of such double jets, we obtain with our quasi-geostrophic computations at very large
forcing (up to 200 times supercritical) intense jets near the tangent cylinder, as shown
in figure 19(b). They are very similar to the ones detailed in our gallium study:
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Figure 20. Amplitude of the mean zonal velocity U as a function of the mean r.m.s. velocity
Ũ from quasi-geostrophic simulations performed at various P and E. The simulations in
gallium are equivalent to the ones in figure 12(a). The dot-dashed line is given by the quadratic
evolution from equation (5.1) and the dashed line by the 4/3 scaling law from equation (4.7).

mainly concentrated near the inner cylinder and steady in time. Moreover their radial
extent increases with the forcing. In between the two extreme behaviours, we obtained
transitional zonal winds for R 
 40Rc (see figure 19a). The sharp transition observed
in the experiment between weak and strong zonal winds (figure 17) is not retrieved
numerically.

As seen in figure 20, the computations for the water case show that the zonal
wind departs from a quadratic law to reach the 4/3 trend. It is striking in figure
20 that the intensity of the zonal wind, once on the asymptote of slope 4/3, does
not depend on the Prandtl number (three different P values have been computed
from 0.025 to 7). This is characteristic of the inertial regime, where thermal diffusivity
no longer plays a role and kinematic viscosity enters the scaling through the friction
term only. Our experimental observations in water are indeed in qualitative agreement
with the gallium analysis. As we do not observe multiple jets in gallium, we cannot
see the number of jets decrease. We interpret this difference between experiments in
gallium and experiments in water as a direct consequence of the smaller length scale
at convection onset in water than in gallium. The width of the jets is derived from
the radial length scale of convective motions, which is constructed, at the onset, from
the largest diffusivity (ν in water, κ in gallium, see table 2). We would need to rotate
gallium four times faster than water to compensate for the difference between their
diffusivities.

Similarly, one can speculate which kind of dynamics occurs in the three-dimensional
computations of the rapidly rotating spherical convection where the Reynolds number
does not exceed a few hundred. In the case of no-slip boundary conditions it is difficult
to generate intense zonal flows, that are damped by the boundary friction. Following

our considerations of the ratio U/Ũ , this means that the Rhines scenario is unlikely
to happen, unless first the forcing is strong enough for the zonal flow to dominate, but
also the Ekman number is small enough to avoid a loss of geostrophy. In the non-
magnetic part of his three-dimensional numerical study, Aubert (2005) interprets the
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zonal flow in the frame of the Rhines scenario developed by Aubert et al. (2001), who
derived the scaling law U ∼ (RQ/P 2)4/5E9/10, where RQ is the heat-flux-based Rayleigh
number. This law is not compatible with (4.7). First Aubert et al. (2001) inferred a
Rhines scale based on the r.m.s. motions, instead of the zonal flow here. Second,
they assumed that the increase in the length scale is negligible – in contradiction
with the Rhines scenario, but see the discussion after equation (4.7). Gillet & Jones
(2006) have reinstated the increase in the length scale into the scaling, and found
instead U ∼ (RQ/P 2)3/5E3/10. They observed that neither the 4/5 nor the 3/5 scalings
presented above represent well the Prandtl number dependence of our computations.
An explanation may be that in the computations where the Reynolds number does
not exceed a few hundred, a reverse cascade does not occur.

The situation is different in the computations using stress-free boundary conditions
where intense zonal jets can be generated more easily. This configuration is more
suited to the atmospheres of the giant planets. For instance Heimpel, Aurnou &
Wicht (2005) have been able to interpret the zonal flow width, inside the tangent
cylinder, in term of the Rhines length scale including a varying β-effect. Interestingly
Aurnou & Heimpel (2004), using a rigid bottom boundary, find vortex-scale unsteady
zonal flows at high latitudes (inside the tangent cylinder), with values of the Reynolds
number of a few hundred, that could be related to the dynamics described in Gillet &
Jones (2006) (see § 5.2).

Key features recently detected in three-dimensional computations were previously
discussed in quasi-geostrophic studies. This gives some credence to this approach: the
transition to different dynamics in the equatorial region was pointed out by Yano,
Talagrand & Drossart (2003), and Jones et al. (2003) stressed the role played by the
bottom friction, which reduces the Rhines length scale (by decreasing the amplitude
of the zonal motions) and therefore allows for the existence of multiple jets.

6. Discussion
We have explored thermal convection in a rapidly rotating sphere (E ∼ 10−6),

with an experiment backed by a quasi-geostrophic numerical simulation. We have
compared the experimental and numerical approaches at both low and large Prandtl
numbers. At the onset of convection, the accuracy of the estimation of the critical
parameters from the quasi-geostrophic approximation model is improved when the
Ekman pumping is taken into account for the non-axisymmetric modes. In the
nonlinear case, the impossibility of describing thermal boundary layers attached to
the outer sphere surface in the frame of the quasi-geostrophic approximation implies
that our model fails to reproduce the amplitude of convection as a function of R/Rc.
It does however reproduce the observed relationships between convective motions,
with a radial component, and zonal motions.

At P = 0.025 (gallium), the zonal flow – mainly a single retrograde jet – makes
up most of the kinetic energy in our experiment even for a slightly supercritical
temperature difference between the inner body and outer sphere. That has enabled us

to derive the relation U ∼ Ũ 4/3 between the amplitudes of radial and zonal motions
in the frame of the β-plane turbulence – see equation (4.7). This scaling law is in
excellent agreement with both our experimental measurements and our numerical
simulations. According to this approach, the typical lateral extent of the jet should
increase with the convective forcing. We could not substantiate this behaviour in
gallium because the jet already occupies a large fraction of the shell radius, and
sphericity effects become dominant. However, a faint prograde equatorial jet appears
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next to the strong retrograde inner jet when the Ekman number is not too small
(E � 2 × 10−6).

At P = 7 (water) we have been able to study convection for R/Rc up to 80. At low
forcing, the weakly nonlinear theory predicts a single retrograde jet again. We could
not access this regime experimentally but quasi-geostrophic simulations reproduce
well this behaviour. At intermediate forcings (R/Rc < 40), our experiments reveal a
new regime with unsteady multiple jets (alternatively prograde and retrograde with
radial wavenumber up to four, see figure 16), as discovered by Jones et al. (2003) in
a quasi-geostrophic simulation. Like them and in agreement with Danilov & Gurarie
(2004), we note that bottom friction for both the azimuthal and the non-azimuthal
motions is essential for obtaining this regime. The zonal kinetic energy remains small
in this regime and the radial extent of each jet is not very different from that of a
single jet at lower forcing. We reproduce the sequence from a single jet to multiple
zonal jets with our numerical simulations, showing similar zonal flow amplitudes, time
dependence, and shapes. It suggests that the scaling laws developed by Gillet & Jones
(2006) in the case where the zonal wind is weaker than the convective flow, based on
numerical simulations, are supported by our velocity measurements. For very large
forcings (R/Rc > 40), our velocity measurements indicate intense retrograde jets, stable
in time, with a large radial extent (twice as large and up to ten times more intense
than the jets obtained at lower forcings). As in gallium, we have associated this feature
with an inverse cascade, including the emergence of the Rhines scale as the zonal
motions become more intense than the non-axisymmetric ones. In agreement with
Rhines’ theory, the general trend is for the lateral extent of the jets to increase with
the convective forcing. However, this tendency is tempered by the strong variation
of β with s, due to the curvature of the spherical shell, and by the finite size of the
convective vortices. Manneville & Olson (1996) even inferred the opposite trend from
laboratory experiments in water at higher Ekman number (E = 4 × 10−5) and in a
spherical shell that was less deep. The relationships between the number of jets, the
zonal wind amplitude and the rotation rate require a more systematic experimental
study.

Concerning the relationship between the zonal and r.m.s. velocities, we find a

transition for U from a Ũ 2 to a Ũ 4/3 power law (see figure 20). The quadratic law
at small forcing reflects the quadratic nature of the Reynolds stress, which is the
source of the azimuthal motion, when the fluctuations in radial velocity and the
gradient of zonal velocity are perfectly correlated, if the characteristic size does not

change. The Ũ 4/3 law is obtained when the increase of the size �β with Ũ is taken
into account. This contrasts with the interpretation of Christensen (2002) who also
observed such a transition in three-dimensional convection models, with stress-free
boundary conditions, at larger Ekman numbers and explained it in terms of a loss
of geostrophy, leading to decorrelation between the two velocities – see also the early
work by Gilman (1978b). Since our numerical simulations are quasi-geostrophic, this
effect is not present in our case. As expected from Rhines’ theory, the transition occurs
when the zonal kinetic energy dominates. Our interpretation points to a universal
behaviour at high Rayleigh number whatever the Prandtl number. This is obscured
in our experiments by the large size of convective cells in gallium at the onset.

We find a very good agreement between our experimental velocity profiles and our
quasi-geostrophic simulations, but we also observe a few differences. In the gallium
experiments, convection extends farther toward the equator and displays less prograde
tilt than predicted. In the water experiments, the strong retrograde jets observed at
large forcings could not be reproduced numerically. Both effects could be due to
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the three dimensional nature of the temperature field, since the evolution of the
temperature variations along the rotation axis and the latitudinal distribution of the
heat flux cannot be described in the frame of the quasi-geostrophic approximation.

The zonal flow in the numerical dynamos using no-slip boundary conditions follows
different physics dominated by thermal wind (Aubert 2005). But the comparison
between the numerical dynamos and the planetary cores only holds for the long
time-scale features, because of the limits in the parameter domain. On the contrary,
the experimental and numerical models that we have developed cast light on some
features of Earth’s core dynamics at time scales from one year to a few hundreds
years. It will require not only lower Ekman and magnetic Prandtl numbers, but also
larger forcings to catch such features in three-dimensional numerical dynamos. The
dynamics of rapid motions that are inferred from magnetic observations and that
thus have periods small compared to the magnetic diffusion time (104 years for the
Earth’s core) are not yet well understood. We envision that rotation forces provide
the main constraint on these diffusionless rapid motions, since inertial waves, which
arise in the presence of rotation, have much shorter periods that Alfvén waves, which
arise in the presence of a magnetic field. Rapidly rotating convection studies can thus
guide us in our understanding of the Earth’s core dynamics on centennial time scales.
There is however a specific action of the magnetic field, on zonal motions only, for
short time scales (10–100 years), as the time evolution of geostrophic motions follows
an equation of the Alfvén wave type. An unanswered question is what mechanism
sets off these geostrophic motions, which are detected in the Earth’s core through
the observed magnetic field (Dumberry & Bloxham 2003). The dynamo simulation of
Takahashi, Matsushima & Honkura (2005) has illustrated the part that the inertial
term (u · ∇) u can play in the acceleration of geostrophic motions. This also motivates
studies on the emergence of zonal motions from Rossby waves in deep spherical shells
such as the present work. In this context we present in a companion paper (Gillet
et al. 2007) our work on rapidly rotating spherical convection in the presence of an
imposed magnetic field.

We are indebted to Philippe Cardin and Julien Aubert who developed the original
quasi-geostrophic code, and largely contributed to the experimental set-up. We thank
Jean-Paul Masson and Robert Bolcato for their skilled technical assistance and Chris
Jones for discussion and helpful comments. N.G. is grateful to École Doctorale “Terre,
Univers et Environnement” and Université Joseph Fourier (Grenoble) for the award
of a studentship. This work was supported by the program Expérimentation of
CNRS/INSU. The computations were performed on the Service Commun de Calcul
Intensif de l’Observatoire de Grenoble.
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